skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sarthak Chatterjee, Subhro Das"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solving optimization problems is a recurrent theme across different fields, including large-scale machine learning systems and deep learning. Often in practical applications, we encounter objective functions where the Hessian is ill-conditioned, which precludes us from using optimization algorithms utilizing second-order information. In this paper, we propose to use fractional time series analysis methods that have successfully been used to model neurophysiological processes in order to circumvent this issue. In particular, the long memory property of fractional time series exhibiting non-exponential power-law decay of trajectories seems to model behavior associated with the local curvature of the objective function at a given point. Specifically, we propose a NEuro-inspired Optimization (NEO) method that leverages this behavior, which contrasts with the short memory characteristics of currently used methods (e.g., gradient descent and heavy-ball). We provide evidence of the efficacy of the proposed method on a wide variety of settings implicitly found in practice. 
    more » « less